

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM FINAL EXAM

COURSE TITELE: STRUCTURAL ANALYSIS 2	COURSE CODE: CES 142

DATE:01/2023

SECOND LEVEL

TOTAL ASSESSMENT MARKES: 40

TIME ALLOWED: 3 HOURS

Systematic arrangement of calculations and clear drawing are essential. Any data not given is to be assumed Answer as many questions as you can - Answer as brief as possible.

Q1) For the given statically indeterminate beam shown, using the "Force Method" draw the B.M.D.

(10 marks)

Q2) Using the "Force Method" draw the B.M.D for the given frame of constant (EI) shown

(10 marks)

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM FINAL EXAM

COURSE TITELE: STRUCTURAL ANALYSIS	1
------------------------------------	---

COURSE CODE: CES 141

DATE:01/2023

SECOND LEVEL

TOTAL ASSESSMENT MARKES: 40

TIME ALLOWED: 3 HOURS

Systematic arrangement of calculations and clear drawing are essential. Any data not given is to be assumed Answer as many questions as you can - Answer as brief as possible.

Q1) Draw the N.F, S.F, and B. M. Diagrams for the shown beam

(9 marks)

Q2) Draw the N.F, S.F, and B. M. Diagrams for the shown frame

(10 marks)

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM FINAL EXAM

Q3) Draw the B.M.D for the shown beam using the "3-moment equation" method.

(10 marks)

Q4) Draw the B.M.D for the structure shown using the method of "Slope Deflecton".

(10 marks)

Hints:

$$M_1 \left(\frac{L_1}{I_1}\right) + 2M_2 \left(\frac{L_1}{I_1} + \frac{L_2}{I_2}\right) + M_3 \left(\frac{L_2}{I_2}\right) = -6 \left(\frac{R_1^L}{I_1} + \frac{R_2^L}{I_2}\right)$$

$$M_{ab} = M_{ab}^{F} + 2K_{ab} (2\theta_{a} + \theta_{b} - 3\varphi_{ab})$$

 $M_{ba} = M_{ba}^{F} + 2K_{ba} (2\theta_{b} + \theta_{a} - 3\varphi_{ba})$

$$M_{ab} = M_{ab}^{F} + 3K_{ab} (\theta_a - \varphi_{ab})$$

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM FINAL EXAM

Q3) For the shown truss calculate the forces in the marked members

(7 marks)

Q4) The shown concrete wall carries a horizontal load H as shown in the Figure

(Own weight of concrete = 2.0 t/m)

(14 marks)

- a) Determine the distribution of normal stresses at the base m m if H = 8.0 t
- b) Find the maximum value of H if no tension is allowed on the soil and draw the corresponding normal stress distribution on the soil

