TANTA UNIVERSITY

FACULTY OF ENGINEERING

 CONSTRUCTION ENGINEERING PROGRAM| COURSE TITELE: STRUCTURAL ANALYSIS 2 | | COURSE CODE: CES 142 | |
| :---: | :---: | :---: | :---: |
| DATE :01/2023 | SECOND LEVEL | TOTAL ASSESSMENT MARKES : 40 | TIME ALLOWED: 3 HOURS |

Systematic arrangement of calculations and clear drawing are essential. Any data not given is to be assumed Answer as many questions as you can - Answer as brief as possible.

Q1) For the given statically indeterminate beam shown, using the " Force Method " draw the B.M.D.

Q2) Using the " Force Method " draw the B.M.D for the given frame of constant (EI) shown

TANTA UNIVERSITY

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM
FINAL EXAM

COURSE TITELE: STRUCTURAL ANALYSIS 1		COURSE CODE: CES 141	
DATE :01/2023	SECOND LEVEL	TOTAL ASSESSMENT MARKES : 40	TIME ALLOWED: 3 HOURS

Systematic arrangement of calculations and clear drawing are essential. Any data not given is to be assumed Answer as many questions as you can - Answer as brief as possible.

Q1) Draw the N.F, S.F, and B. M. Diagrams for the shown beam
(9 marks)

$7.0 \mathrm{~m} \quad, 2.0 \mathrm{~m}, 2.0 \mathrm{~m}, 2.0 \mathrm{~m}, 2.0 \mathrm{~m}, ~ 2.0 \mathrm{~m}$,

Q2) Draw the N.F, S.F, and B. M. Diagrams for the shown frame

FACULTY OF ENGINEERING

Q3) Draw the B.M.D for the shown beam using the " 3-moment equation " method .
$3 \mathrm{t} / \mathrm{m}$

Q4) Draw the B.M.D for the structure shown using
the method of " Slope Deflecton" .

Hints:

$$
M_{1}\left(\frac{L_{1}}{I_{1}}\right)+2 M_{2}\left(\frac{L_{1}}{I_{1}}+\frac{L_{2}}{I_{2}}\right)+M_{3}\left(\frac{L_{2}}{I_{2}}\right)=-6\left(\frac{R_{1}^{L}}{I_{1}}+\frac{R_{2}^{L}}{I_{2}}\right)
$$

$$
\begin{aligned}
& M_{\mathrm{ab}}=M_{\mathrm{ab}}{ }^{F}+2 K_{a b}\left(2 \theta_{a}+\theta_{b}-3 \varphi_{a b}\right) \\
& M_{\mathrm{ba}}=M_{\mathrm{ba}}{ }^{F}+2 K_{b a}\left(2 \theta_{b}+\theta_{a}-3 \varphi_{b a}\right)
\end{aligned}
$$

$$
M_{\mathrm{ab}}=M_{\mathrm{ab}}{ }^{F}+3 K_{a b}\left(\theta_{a}-\varphi_{a b}\right)
$$

FACULTY OF ENGINEERING

CONSTRUCTION ENGINEERING PROGRAM
FINAL EXAM
Q3) For the shown truss calculate the forces in the marked members
Note: Reactions are given

Q4) The shown concrete wall carries a horizontal load H as shown in the Figure
(Own weight of concrete $=2.0 \mathrm{t} / \mathrm{m}^{3}$)
a) Determine the distribution of normal stresses at the base $\mathrm{m}-\mathrm{m}$ if $\mathrm{H}=8.0 \mathrm{t}$
b) Find the maximum value of H if no tension is allowed on the soil and draw the corresponding normal stress distribution on the soil

